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Abstract 
This project was inspired by autotune, more specifically those children toy karaoke microphones 
that have a robotic sounding output. The user will press a button to begin recording their voice 
and then release the button when they are done, the “autotuned” output will then play over the 
speaker. We say “autotune” because we choose to go with an effect that results in a fun robotic 
sounding effect. The system works by first recording the input on a microphone. The audio is 
sampled at 16 kHz by the ADC on the MCU and then sent over SPI to the FPGA. The FPGA 
performs a 512-point FFT and then sends back the data to the MCU over SPI. The MCU then 
performs some signal processing including a phase quantization to get that robotic effect and an 
IFFT to reconstruct the real time signal. The data is then sent over SPI to an external DAC to 
output on the speaker. This process is detailed in the block diagram below. 
 

 
Figure 1. Block diagram of full design 
 
 

 



Documentation 
 
Schematic 
Shown below is the electrical schematic of the system. The microphone used was a MAX9814 
which has a built-in gain and filtering allowing us to feed this output directly into the MCU 
without an additional receive circuit. A simple button was used to begin recording the audio that 
the user will interact with. The SPI lines to the FPGA are shown. The external DAC60501 is 
shown sharing the same bus as the FPGA with its own chip select line. The 12-bit DAC then 
outputs a voltage that goes through an LM368 for gain and outputs through a speaker.   
 

 
Figure 2. Electrical Schematic 
 
Project Schedule 
To create a work breakdown for this project, we created this Gantt Chart, which details the steps 
needed to be done for all components of the system. These steps are broken down to all the team 
members and are also divided to cover the remaining four weeks of the course. 

Budget Details 
This BOM contains all the parts needed for this project, including the part number, datasheet, 
quantity, and price, ensuring that we are staying below the maximum $50 budget for this project. 

Source Code 
All of the code for the project can be found in this Github repository. 
 

 

 

https://docs.google.com/spreadsheets/d/1kusEpCj_d1WWI62bcl0-s2-HKAMPhh-NY7Zlc7eCRZo/edit?gid=1115838130#gid=1115838130
https://docs.google.com/spreadsheets/d/1tOs_Sua0AhzrffzvIQz2RKQOkbpLTWvWKPmFoRWCpJY/edit?gid=0#gid=0
https://github.com/jaredcarreno/e155-final-project


MCU Design Overview 
The MCU used was a STM32L432KC. The new peripheral enabled was the ADC used to sample 
the data from the microphone, convert to a digital signal, and then send the data over to the 
FPGA using SPI. The sampling rate was chosen to be around 16kHz to limit the amount of data 
being sent and processed by the FPGA. The tradeoff is missing frequencies above 6kHz per the 
nyquist theorem, however, since we intend to test on voices the average human voice ranges on 
the order of a couple hundred hertz [1].   
 
The ADC peripheral was configured to run with as little CPU overhead as possible. This was 
done by configuring the ADC to store data in DMA. The ADC triggers on its own internal clock 
allowing a reliable sampling frequency determined by the prescaler and sample time. The ADC 
clock is derived from the system 80MHz clock. When the ADC is sampling it fills a 1024 size 
buffer with data size of 8 bits. DMA interrupts are enabled to trigger when the buffer is half-full 
and full. Every time the interrupt is triggered the 512 new samples are saved and then sent over 
SPI. Since the SPI is transmitted over at 625kHz we can empty out the buffer faster then we are 
filling the buffer since we sample at 16kHz. This means that the first half and second half of the 
buffers can be saved and emptied without worry that the ADC will override the values while they 
are still being transmitted.   
 
The recording of the data takes place when the button is being pressed down and stops when the 
button is released. This was implemented by polling a GPIO pin that is connected to the button. 
When the button is high (pressed) the ADC and DMA are enabled and the sampling begins 
which triggers the SPI transactions. When the button is low (not pressed) the ADC and DMA are 
turned off to prevent any extra sampling and to save CPU usage for other processes down the 
data chain.   
 
The FPGA sends back the FFT data over SPI. That data is then saved in a buffer and processed. 
The first step in processing the sample is some sort of alteration to the complex data to alter the 
output. The team implemented a phase quantization which results in a robotic effect when the 
signal is reconstructed. The quantization works by snapping the phase of each bin to a few 
discrete values. This will force each FFT bin’s phase to the nearest value in a set of fixed phase 
angles. Once the phases have been altered an IFFT is performed on the data. The CMSIS-DSP 
library was used to perform the IFFT and support complex math functions. Lastly, to construct 
the real time signal a Hanning window is applied and then overlap-adds to each IFFT frame so 
that all overlapping pieces sum together to one continuous real-time waveform. The data then 
goes through some slight scaling and offset to make sure that it outputs a voltage value to the 
DAC that is in the desired 0-5V range. The voltage values are sent over SPI at a timed rate to an 
external DAC60501. The timed rate must match the sampling rate of 16kHz to ensure the time 
scale corresponds to the original signal.  



FPGA Design Overview 
This project’s designs were run on an UPduino v3.1, a low-cost board featuring an iCE40 
UltraPlus FPGA. The primary responsibility of the FPGA was to accept and handle the 
microphone data being sampled by the MCU’s ADC, then perform a Fast Fourier Transform 
(FFT) to extract frequency components, and transmit the results back to the microcontroller for 
further processing and audio reconstruction. The FPGA design’s system clock was driven by the 
built-in HSOSC module running at 12 MHz. To handle data coming from the MCU, the design 
implemented a buffer at the FFT input stage. This allowed the data to cross safely from the 
slower, intermittent SPI clock domain into the high-speed, continuous FPGA clock domain 
without data corruption or metastability issues.   
 
Once the SPI module’s input buffer assembled a complete 16-bit sample, it was immediately 
pushed into the processing pipeline. The control logic was implemented as a finite state machine 
that monitored the input. When valid data was available, a control signal told the FFT to begin 
processing. The output of the processing chain was then serialized and held in an output buffer, 
ready to be shifted out on the MISO line during the next SPI transaction initiated by the master 
MCU. 
 

 
Figure 3. RTL Diagram of full implementation 
 
FPGA Design Overview: FFT 
The team’s FFT design was an adaptation of the provided 32-point FFT design by Alec 
Vercruysse [2], though some significant changes to ensure operation of the significantly larger 
FFT. 

The Fast Fourier Transform (FFT) system was implemented using a SystemVerilog architecture 
comprising four primary modules: the SPI bridge, the central FFT Controller, the Address 
Generation Unit (AGU), and the Datapath (Butterfly Unit and Memory). The design calculates a 
512-point FFT using a decimation-in-time algorithm. 

Multiple clocks were employed to prevent timing conflicts between modules. The fft_controller 
module utilizes three distinct clock domains: a system clk, a ram_clk for memory operations, and 



a slow_clk for state management. This differs from the reference design, which operated on a 
single global clock domain. The slow_clk drives the control logic and address generation to 
ensure addresses are stable before memory operations, while the ram_clk drives the memory 
blocks. 

Aside from the addition of two new clock domains, the core logic had to be scaled to 9 bits to 
account for the additional stages of computation required to compute a 512-point FFT. The width 
of the core logic was based on the fact that 29 is 512, meaning that this design would require 
nine stages of computation where the FFT is divided into two smaller FFTs in each stage. 

The design’s memory was split up into two blocks, ram0 and ram1, which were then split into 
two separate blocks each with four blocks of RAM total: ram0_a, ram0_b, ram1_a, ram1_b. This 
was a design choice made to ensure that data was being read from ram0 and write results to 
ram1. The butterfly iteration was expanded to count up to half of the FFT’s size (255, including 
zero) since the FFT is symmetric and all unique values are calculated within the first half. Upon 
completion of all nine computational stages, the FFT is designed to raise a ‘done’ signal that 
indicates completion. 

The AGU’s role is to calculate the read and write indices for the memory banks dynamically 
based on the current computational stage, fft_level, and the current butterfly iteration, 
butterfly_iter. This module is also important for ensuring that the correct twiddle factors are 
correctly selected by generating the address of the twiddle factor based on fft_level and 
butterfly_iter as well. In the final section of the module, the bits are reversed given the fact that 
the DIT algorithm produces outputs in bit-reversed order, ensuring that the data being stored is 
correct. 

FPGA Design Overview: SPI 
In order to move data between the MCU and FFT, the FPGA uses a custom SPI interface 
coordinated by a pair of small FSMs. Due to the MCU’s SPI clock being asynchronous to the 
FPGA’s 12 MHz internal clock, all incoming edges are first passed through synchronizers. This 
guarantees that each SPI transition is cleanly detected and treated as a synchronous event. 
 
On the input side, an FSM monitors synchronized clock edges, shifts bits into an 8-bit register, 
and writes each completed byte into a 512-entry buffer. Each 8-bit audio sample is then 
expanded into the 32-bit complex format required by the FFT by sign-extending the real part to 
16 bits and setting the imaginary part to 0. Once this buffer has been completely filled with a 
frame of audio samples, the FSM asserts a short trigger signal indicating that the FFT can begin 
processing. The return path is handled by a second FSM. As the FFT generates its 32-bit 
complex outputs, they are written into an output buffer. During the next SPI transaction from the 
MCU, the FSM fetches each word, inserts a once-cycle wait to allow the memory read to settle, 



loads the word into a shift register, and then shifts it out bit-by-bit on subsequent SPI clock 
edges. 
 
These coordinated state machines allow the MCU to stream audio data into the FPGA while 
receiving FFT results in real time, all through an SPI link that safely bridges the two clock 
domains. 
 

Analog Design Overview  
The pre-amp purchased was a MAX9814 which has a microphone built in along with set gain 
settings. Testing was conducted to determine the output range of the microphone under different 
conditions. We found that the range of the output was always within the specified range of 3mV 
to 2.4V which lands very nicely in the range of our MCU which is 0-3.3V. Therefore, these 
settings were sufficient allowing us to feed the output directly into the MCU without need of a 
gain and offset signal chain. Testing also revealed clear sine waves even in a very noisy 
environment which showed promise for getting reliable data off of the microphone. 

The transmit chain consisted of a 12-bit DAC and a low voltage power amplifier that fed into an 
8-ohm speaker. The output data was sent over SPI to the DAC60501 which was configured to 
output a voltage range between 0 and 5V. Then output fed into the LM368 which was configured 
to have a gain of 20 with a potentiometer for adjustable volume. An 8-ohm speaker played the 
output. 

The new non-trivial hardware was an external DAC60501; the 12-bit digital-to-analog converter 
provided a highly accurate voltage output. The device includes an internal 2.5V reference which 
was used along with a gain configuration of 2 to allow for an output range of 0-5V. The DAC has 
a power on reset circuit that sets the DAC to midscale 2.5V at power up. The device consumes a 
low current of 1 mA allowing it to be powered off of the MCU’s 5V supply. The device also has 
a selectable SPI or I2C mode, here it was configured to be in SPI mode. To set the voltage of the 
DAC a 24-bit message is sent over SPI, the first 8 bits being the address of the register here we 
write to the DAC DATA register, the next 12-bits contain the DAC voltage code based on the 
equation detailed in the datasheet and the last 4 bits are zeros. 

 

Main Results 
The project met most of the intended specs, which are shown below: - The system captures 
microphone input through the MCU’s ADC. 

●​ The system uses an external DAC to output processed audio from the FPGA. 



●​ Audio data is transferred between the MCU and FPGA using the SPI protocol with no 
dropped samples. 

●​ The FPGA performs pitch detection and phase quantization. 
●​ The system quantizes each FFT bin’s phase to one of 16 levels while preserving the bin’s 

magnitude within ±1%. 
●​ The output of the system starts playing one second after the user is finished speaking. 

The final result of the project did not end up producing a robotic or “autotuned” response, but 
this is primarily due to one error in the SPI communication. Despite this, all other critical 
components of the project functioned as expected, and their results, which were individually 
verified, are outlined below to show how they met the intended specs. 

As detailed in the analog design overview, testing the MAX9814 revealed that even in a noisy 
lab environment, clean waves could be extracted from the microphone that were within the 
required voltage input of the MCU (0 to 3.3 V). These results are shown below in Figure 4. The 
system also successfully captured the microphone’s input through the MCU’s internal ADC. As 
detailed in the MCU design section, the sampling rate was chosen to be around 16kHz due to the 
intent of testing on human voices, whose range is on the order of hundreds of Hertz. 

Figure 4. Output wave from microphone in noisy lab environment 

The FFT functionality on the FPGA was tested thoroughly. Using a Python script, a square wave 
with an amplitude of 100 was generated and outputted to a .memh file in hex format. This 



allowed the team to feed data into the FFT to verify functionality. In addition to the test data, the 
twiddle factors were also generated using a Python script and written to a .memh file in binary 
format. These twiddle factors are fundamental to the calculation since they serve as the FFT’s 
roots of unity for a given index k.   

For validation of the FPGA FFT implementation, the sample input data was fed into NumPy’s 
‘fft’ function and the fft_controller.sv module was simulated in QuestaSim. As shown below in 
Figure 5, the output of the simulated FPGA implementation was relatively close to NumPy’s 
FFT implementation with a maximum amplitude difference of 18. 

 
Figure 5. Plots comparing the ideal FFT output results with the 512-point FPGA FFT 
implementation 
 
The SPI communication between the MCU and FPGA was only functioning partly in hardware, 
which is the reason the project was not able to perform a live demonstration. After writing the 
code for the SPI communication, the team tested the functionality on software first with a 
testbench, which is shown below in Figure 6. This testbench was aimed at testing the full 
function of the FPGA, which was done by giving an example sample into the sdi line, having this 
be transferred into and processed by the FFT, and outputting the processed samples on the sdo 
line. This testbench ran successfully, and all states of the FSM, flags, trigger signals, and outputs 
were checked to follow expected behavior. Using this, the team was able to conclude that the SPI 
module was functioning as expected. When testing the SPI functionality on the hardware by 
sending an example sample from the MCU to the FPGA, successful transfer of the sample from 
the MCU to the FPGA was observed. However, there was no valid output observed on the sdo 
line. This behavior is shown below in Figure 7. A lot of testing was done to troubleshoot this, but 



ultimately, due to time limits, we were unable to identify the issue. However, we are confident 
that our SPI module functions conceptually; there was just some persisting hardware/analog bug 
that was limiting output from the FPGA. 
 

 
Figure 6. Full system testbench results with SPI module integrated 
 

 
Figure 7. Logic analyzer trace of the SPI transaction between the MCU and FPGA  
 



The team also tested the phase quantization “autotune effect” individually, and confirmed that 
the MCU successfully performed this. As described in the MCU design section, the MCU takes 
in the first 256 bins of the FFT output, and uses Hermitian symmetry to conjugate these to the 
full 512 frames. Then it performs phase quantization, where it quantizes the phase to a discrete 
step and rebuilds the complex bin with the same magnitude and new phase. This was tested by 
inputting a sample known FPGA output frame into FPGA and testing the DC bin, an active bin, 
and its conjugate. The DC bin is 0, as expected. Given the known input and the scaling factor in 
the function, the real value of bin 10 is also as expected. Hermitial symmetry was also proved to 
be functioning, because the mirror bin of bin 10 was its conjugate. These outputs showing a 
successful phase quantization test are shown below in Figure 7. This test also verified that the 
system quantizes each FFT bin’s phase while preserving the bin’s magnitude within 1%. We used 
16 phase levels because it produces a clear robotic effect while remaining computationally 
efficient on the STM32. Since the magnitude is carried through unchanged, its amplitude should 
be within ±1% while the phase becomes discretized, which is proved below in Figure 8. 
 

 
Figure 8. Isolated phase quantization test output 
 
Testing also proved that the system can output a desired signal to the DAC, however, it is not 
necessarily processed from the FPGA. To test this the FFT of a sine wave was generated and 
then fed into the phase quantization function and IFFT+reconstruction. Then the voltage values 
were sent to the DAC and probed showing the desired frequency of 256Hz, as shown in Figure 9. 
This showed that the DAC was able to output a wave of a desired frequency and that the signal 
processing behaved as expected. 
 



 
Figure 9. DAC60501 voltage output reading for desired 256Hz sine wave 
 
Due to the extensive isolated tests we ran on the system, we reached the conclusion that except 
the hardware bug in SPI limiting the output from the FPGA, the rest of the system works as 
intended. A final test was performed to prove this by playing out the wave shown in Figure 8 
which resulted in a robotic effect output. The result of this is also shown in the video below. Our 
circuitry on the breadboard is shown below in Figure 10. 
 



 
Figure 10. Final system breadboard 
 
A link to an audio output example can be found here.  
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